Mini Incision implantation

- Easily and safely injected through an incision of 2.2 mm.
- Excellent memory – superior foldability, slow release and gentle unfolding.

Technical Specifications

- Overall diameter: 13.00 mm
- Optic diameter: 6.00 mm
- Haptic angulation: 5°
- Optic design: Aspheric bi convex
- Edge design: 360° Continuous Square Edge
- Power range: +5.0 to +10.0 (1D increments)
- +10.5 to +30.0 (0.5 D increments)
- +31.0 to +35.0 (1D increments)
- Material: Hydrophobic Acrylic incorporates a natural yellow filtering
- Filtration: UV Blocker and violet light filter
- Refractive Index: 1.484 (@ 35°C)
- YAG laser: Compatible
- Estimated A constant: SRK/T IOLMASTER biometry: 119.5*
- SRK/T US biometry: 119.16*
- Placement: Capsular Bag
- CE Approved

* It is recommended that surgeons personalize their A-constant based on their surgical techniques and equipment, experience and post-operative results.

For more information please visit Hanita lenses website.

Hanita Lenses

Hanita Lenses is a worldwide trusted manufacturer and provider of intraocular lens solutions for cataract surgery.

With more than 30 years of experience in meeting the varied needs of ophthalmic surgeons, the Hanita Lenses name is synonymous with high quality, reliability and service.
SeeLens HP, the new Aspheric Hydrophobic Intraocular lens from Hanita Lenses, provides the patient with an excellent vision quality at day and night conditions, by using state-of-the-art aberration free aspheric optical design.

Advanced Optical Design

The Aspheric SeeLens HP was designed using the most advanced tools by a professional R&D team of optical and mechanical engineers. The optical profile of the SeeLens HP was calculated using ZEMAX™ software - a simulating tool for the optical design optimization. Calculations were aimed to minimize all aberrations, including the spherical aberration of the cornea, and to optimize the MTF (Modular Transfer Function).

Eye Model

The optical design of SeeLens HP was performed using the advanced Arizona Eye model.[1] The parameters and dimensions of the eye model are consistent with average human data. The model was designed to match clinical levels of aberrations, both on and off axis. The retina curvature is designed to split the tangential and sagittal foci off-axis. The result is an accurate simulation of the visual performance of the SeeLens HP in the Post-operative eye.

Geometrical Design

- SeeLens HP ensures excellent stability and centration due to the unique C-loop mechanical design of the haptics.
- 360° continuous square edge in order to minimize PCO.

Stability and Centration

The SeeLens HP design provides a visual advantage over spheric lens even if decentered up to 0.8 mm.

Material

- The SeeLens HP is made of a hydrophobic material with biodegradable characteristics, resulting in reduction of secondary cataract procedures[1].
- The SeeLens HP has a very low glistening rate[2,3].
- The SeeLens HP hydrophobic material incorporates a violet filtering chromophore for better protection of the retina.

[2] Data from Benz Research and development QA Dept

Spheric Lens - Spherical aberration

SeeLens HP - Aberration free

Light filtration of the SeeLens HP

The SeeLens HP provides protection for the retina, by filtering light of wavelength below 400 nm.

Material

- The SeeLens HP reduces spherical aberration to minimum
- SeeLens HP Improves functional vision
- SeeLens HP Improves night vision
- SeeLens HP designed with the most advanced optical tools